Semi-Supervised Cause Identification from Aviation Safety Reports

Isaac Persing and Vincent Ng University of Texas at Dallas

Background

- The Aviation Safety Reporting System (ASRS) collects voluntarily-submitted reports on aviation safety incidents.
 - Each report includes a narrative describing an incident.
- Cause Identification is the task of identifying all and only those causes (or shaping factors) that contributed to each incident given a narrative describing it.
- 14 causes (or **shapers**)
 - Attitude, Communication Environment, Duty Cycle, Familiarity, Illusion, Pressure, Physical Environment, Physical Factors, Preoccupation, Proficiency, Resource Deficiency, Taskload, Unexpected, and Other.
 - Each incident may be caused by one or more of these factors.

Challenges

Multi-class classifiation

While many classification problems involve only a few classes,
 Cause Identification involves 14 classes, one for each shaper.

Skewed class distributions

 Some shapers contribute to as few as 0.2% of incidents (Illusion), or to as many as 48.9% of incidents (Resource Deficiency).

Multi-label categorization

Incidents may be caused by multiple shapers.

Presence of irrelevant information

• Most of the information in a narrative (e.g., where and when the incident took place, who was around when the incident took place, opinions of other people involved) is not pertinent to Cause Identification.

Scarcity of labeled data

 Until we worked on this problem, there was no publicly-available corpus in which the reports are labeled with shapers. For training and evaluation, we hand-annotated a small dataset consisting of 1,333 narratives.

Dealing with Challenges

- We treat Cause Identification as 14 binary classification tasks. Thus each report may be labeled as a positive example of multiple shapers by 14 different SVM classifiers.
- Since some shapers appear only rarely, we identify the 10 least frequently occurring shapers as minorities and treat minority shaper classification as a separate problem.
 - Cumulatively, these 10 minority shapers account for only 26.2% of labels.
 - The minority shapers are: Attitude, Communication
 Environment, Duty Cycle, Familiarity, Illusion, Pressure,
 Physical Factors, Preoccupation, Taskload, and Unexpected.
- ASRS archives many narratives that have not been annotated with shaper information. We use a bootstrapping algorithm to automatically label additional reports from the large remaining unlabeled set. This helps us overcome the small human annotated data set size.

Bootstrapping Algorithm

Input: L+ (a small set of positively-labeled narratives)

- L- (a small set of negatively-labeled narratives)
- U (a large set of unlabeled narratives)
- Preprocess the documents (e.g., acronym expansion, stemming)
- 1. For each Shaper:

Expand L+

Expand L-

- 1. Repeat until done:
- 1. If L- is larger than L+,
 - 1. Choose 4 words that are highly positively correlated with the narratives in L+ using log likelihood ratios.
 - 2. Add to L+ any narrative in U having at least 3 positive words.
- 2. Else
 - 1. Choose 4 words that are highly positively correlated with the narratives in L- using log likelihood ratios.
 - 2. Add to L- any narrative in U having at least 3 negative words.
- 2. Train an SVM classifier on all documents in L+ and L-.

Sample Word Selections

Shaper	Positive Expanders	Negative Expanders
Familiarity	unfamiliar, layout, unfamiliarity, rely	
Physical Environment	cloud, snow, ice, wind	
Physical Factors	fatigue, tire, night, rest, hotel, awake, sleep, sick	declare, emergency, advisory, separation
Preoccupation	distract, preoccupied, awareness, situational, task	declare, ice, snow, crash, fire, rescue, anti, smoke

Experimental Setup

- Goal: enhance the performance of a Cause Identification system by making use of unlabeled data, as opposed to a purely supervised system which would train only on human-annotated data.
- 5-fold cross-validation with the 1,333 human-annotated reports
- Each SVM classifier may attempt to tune zero, one, or both of two parameters
 - Classification Threshold How confident about the classification must one of the SVMs be before we label the narrative as a positive example of the SVM's shaper? Default value is 0.5.
 - Our goal is to maximize F-measure on the Cause Identification task. Classification Threshold helps us find the right balance between precision and recall to do this.
 - Iteration How many iterations of the bootstrapping algorithm should we perform before training the SVMs on the resulting training data? Default value is 0.
 - On each iteration, we might add some noise to the training data.
 The iteration parameter tells us when to stop bootstrapping.
 - Systems tuning any of these parameters train on 3/5 of the initially labeled data, use 1/5 for parameter tuning, and 1/5 for testing.
 - The system that uses default values for all these parameters trains on 4/5 of the initially labeled data and tests on the remaining 1/5.
- We trained 2 purely supervised SVM baseline systems.
 - B₀.₅ does no parameter tuning.
 - Bct tunes the classification threshold parameter, but not the iteration parameter.
 - Both use only human-annotated data for training.
- We trained 2 semi-supervised SVM systems using our bootstrapping algorithm.
 - E_{0.5} tunes the iteration parameter, but not the classification threshold parameter.
 - Ect tunes both classification threshold and iteration parameters.
 - Both use human-annotated and unlabeled data for training.

Results and Discussion

System	All 14 Classes		10 Minority Classes			
	Precision	Recall	F-measure	Precision	Recall	F-measure
B 0.5	67.0	34.4	45.4	68.3	23.9	35.4
Bct	47.4	59.2	52.7	47.8	34.3	39.9
E 0.5	60.9	40.4	48.6	53.2	35.3	42.4
Ect	50.5	54.9	52.6	49.1	39.4	43.7

- Neither SVM classifier with bootstrapping outperforms the baseline Bct on the 14 shaper classification task.
- Both SVM classifiers with bootstrapping outperform both baselines on the 10 minority shaper classification task.
 - In particular, Ect obtains a micro f-measure of 43.7%, a relative error reduction of 6.3% over Bct's performance (39.9%)
- Bootstrapping is useful when there are few positive examples of a class, but when more positive examples are available, noise introduced hurts performance more than the training set size increase helps.
- Bootstrapping helps minority class prediction.